
Chapter 5

Thermal Performance

The crucial parameter in designing npps is the produced in the core and its removal
by the coolant. To that end, water coolant at 280 to 340 ◦C and heat flows from
the fuel rods to the coolant. Since heat is generated inside the fuel rods and flows
radially outward, the temperature gradients are established within the rods and it
strongly affects the performance and properties of the materials.

High operating temperature lead to high thermal efficiency, but severe material
degradation processes are accelerated with temperature. Temperature gradients in
the fuel can cause stress and fuel cracking. In this section, we predict temperature
gradient of fuel-cladding system, which is a key to control the performance of the
npps.

5.1 Fission heat generation

Fission splits the uranium atom into two lower-mass isotopes (fission products) and
release two to three energetic neutrons (average energy ∼ 2MeV) as well as other
particles, such as α, β and neutrinos. The overall energy release in a single fission
reaction is about 200MeV and around 95% of which (190MeV) is deposited in
the fuel pellet. In thermal reactors, which is PWR (Pressurized Water Reactor),
∼ 2MeV neutrons reduce their energy to the thermal energy ∼ 0.025 eV by the
passage of the moderator (water).

In parallel with neutron-induced fission, uranium absorbs neutrons to from
transuranic elements. The most important transuranic nuclide is Pu-239, which
is formed by neutron absorption of U-238 followed by β decay. At the end of the
fuel residence time in the reactor, up to one-third of the reactor energy is produced
by plutonium fission. In reactor core of PWR, there are many heat sources:

• Fast fission of U-238

• Thermal fission of U-235

• Thermal fission of Pu-239

• etc.

In beginning of fuel element life, the fission rate is given by

Ḟ (t) = q(t)NU(t)σ
U−235
f ϕth

where
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• q is the enrichment of U-235, typically 0.02 to 0.05.

• Thermal neutron flux, ϕth is ∼ 2× 1013n/cm2s

• The thermal fission cross section of U-235, σU−235
f is 5.5×10−22cm2 or 550 barns.

• NU is the density of UO2 is 2.5× 1022atom/cm3.

It gives the fission-rate density

Ḟ = 0.8 ∼ 1.3× 1013s−1cm−3

which is equivalent to a linear heat rate(LHR) as high as 300W/cm for a standard
fuel rod.

5.2 Fuel burnup

There are three measures of burnup. The fission density (fissions per unit volume)
given by

F =

∫ t

0

Ḟ (t′)dt′[fission/m3]

The fissions per initial metal atom (FIMA):

FIMA =
F

NU(0)

bu is the number of megawatts days of thermal energy released by a fuel initially
containing 1 kg of uranium. The 190MeV released in each fission that is deposited
in the fuel corresponds to 3.0× 10−11J. It can be converted to

1bu = 1
MWd

kgU
= 887FIMA

Usually, the average fuel discharge is about 50bu for PWR. The NRC (Nuclear
Regulatory Commission) has established a burnup limit of 62.5bu.

5.3 Fission heat removal

The thermal design of a fuel element is constrained by various limits. The difference
between a limiting condition and the actual state of the fuel is termed the margin.
One of the important condition is fuel not have to be melt. The melting temperature
of fuel is 3140K or 2867 ◦C and that of Zr cladding is 2150K and 1877 ◦C.

Large temperature gradients in the fuel should be avoided many issues; we do
not cover it seriously in this class. These constrains dictate a fuel with high thermal
conductivity. This is best achieved with metallic fuels, whose thermal conductivities
are much higher than that of UO2. However, metallic fuels exhibit serious dimen-
sional instabilities under irradiation, while uranium dioxide is a remarkably stable
matrix being able to undergo thermal cycling.
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Figure 5.1: The heat transfer geometry in a nuclear fuel rod.

5.3.1 Heat conduction in the fuel

Ninety-five percent of fission energy is removed as heat from the fuel element by
conduction in the geometry shown in Fig. 5.1. Heat is generated in the pellet and
flows radially through the fuel, the pellet-cladding gap, and the cladding proper to
reach the coolant. Because the axial temperature variation is relatively gradual and
there is comparatively less azimuthal temperature variation, considering only radial
heat flow is a good approximation. The steady-state heat conduction equation is

1

r

d

dr

(
rkF

dT (r)

dr

)
+Q(r) = 0 (5.1)

where T is the temperature, r is the radial position in the pellet, kF is the fuel
thermal conductivity, and Q is the volumetric heat generation rate given, assumed
homogeneous for simplicity,

Q = 3.0× 10−11Ḟ

And LHR is usually approximated by

LHR = πR2
FQ (5.2)

With boundary condition impose to Eq. 5.1,

T (RF) = TS
dT (r)

dr

∣∣∣∣
r=0

= 0

Then,

T (r)− TS =
QR2

F

4kF

(
1− r2

R2
F

)
=

LHR

4πkF

(
1− r2

R2
F

)
(5.3)

or
T (r)− TS

T0 − TS
= 1− r2

R2
F

(5.4)

where T0 is the fuel centerline temperature. Thus a parabolic temperature profile
is established whenever heat generation and fuel thermal conductivity are radially
constant.

From Eq. 5.3,

T0 − TS =
LHR

4πkF
(5.5)
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The equivalent calculations for plate is

T (x)− TS =
LHR

2πkF

(
1− x2

t2F

)
where tF is the plate fuel thickness. For spherical fuel,

T (r)− TS =
LHR

6πkF

(
1− r2

R2
F

)
where r is the radius of spherical fuel. The average fuel temperature is calculated
using

T =
1

πR2
F

∫ RF

0

2πrT (r)dr = 2

∫ 1

0

ηT (η)dη (5.6)

where
η =

r

RF

Plug Eq. 5.4 into Eq. 5.6, we have

T =
T0 + TS

2

5.3.2 Heat transfer resistance beyond the fuel

Heat transfer through the gap is characterized by a conductance, hgap(W/m2 ·K).
If the gap is open,

hgap =
kgap
δgap

(5.7)

where δgap is the gap thickness and kgap is the thermal conductivity of the gas in
the gap and kgap is the thermal conductivity of the gas in the gap. In as-fabricated
fuel rods, the gap is filled with helium at ∼ 10 atm pressure. The reason for initial
pressurization is to avoid drastic thermal-conductivity reduction as fission gases
such as xenon and krypton are released from the fuel. The thermal conductivities
of these gases are

kgas = A× 10−4T 0.79Wm−1 K−1 (5.8)

where A = 16 for He and A = 0.7 for Xe. A simple mixing rule yields

kgap = k1−y
He kyXe

where y is the fraction of Xe in the gas mixture.
Since the gap thickness is much less than the fuel radius, the heat flux through

the gap is

q =
LHR

2πRF
= hgap(TS − TCI)

or

TS − TCI =
LHR

2πRFhgap
(5.9)

where TCI is the cladding inner-surface temperature.
The next resistance in series in the cladding, for which an analysis similar to

that for the gap yields

TCI − TCO =
LHR

2πkC

[
ln

(
RF + δC

RF

)]
(5.10)
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Because the cladding is tabular, Eq. 5.10 can be approximated when δC ≪ RF,

TCI − TCO =
LHR

2πRFkC/δC

TCO is the cladding outer-surface temperature.
Heat transfer from the cladding outer diameter to the coolant occurs by convec-

tion:

TCO − Tcool =
LHR

2πRFhcool
(5.11)

Adding Eqs. 5.9, 5.10 and 5.11,

TS − Tcool =
LHR

2πRFh
(5.12)

where
1

h
=

1

hgap
+

δC
kC

+
1

hcool

With the typical numbers,

Tcool = 580K LHR = 20 000W/m

hcool = 26 500W/m2 ·K kHe = 0.25W/m ·K

The pellet radius and cladding thickness are

RF = 5× 10−3m δC = 6× 10−4m

The gap width is
δgap = 3× 10−5m

From Eq. 5.11,
TCO = 601K

From Eq. 5.10,
TCI = 631K

When He is filled in the gap, from Eq. 5.8,

kgas = 0.25W/m ·K

From Eq. 5.7,
hgap = 7050W/m2 ·K

From Eq. 5.9,
TS = 705K

From Eq. 5.5,
T0 = 1236K (5.13)

As burn up progresses, the porosity of fuel increases. Let’s assume the porosity is
5% after some degree of burn up. The density of UO2 is 10.98 kg/m3 and length of
fuel stack is 300 cm and plenum length is 20 cm. The average molecular weight of
fuel is assumed by 270. Then

Moles UO2 =
π × 0.52 × 300× 0.95× 10.98

270
= 9.1
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The gas space in rod is when the gap is 80µm,

π × 0.52 × 20 + 2π × 0.5× 0.008× 300 = 15.7 + 7.5 = 23.2× 10−7 m3

Initially, the moles of He is at T = 373K

Moles He =
10× 23.2

82× 373
= 7.6× 10−3

assume that it follows state equation for ideal gas. When Xe fission yield is 0.25,
and burnup is 3%, then amount of Xe produced is

9.1× 0.03× 0.25 = 0.068mol

Assume that 6% of fission gas is released, then

0.068× 0.06 = 4.1× 10−3mol

of Xe is released, that the fraction of Xe for the gas in the gap is

4.1

7.6 + 4.1
= 0.35

Since
kHe = 0.25 kXe = 6.9× 10−3

we have
kgap = (0.25)0.65(6.9× 10−3)0.35 = 7.22× 10−2

Then
hgap = 241W/m2 ·K

Then we have
TS − TCI = 188K

The Xe in the gap increases ∆Tgap by 100K, which would make the

T0 = 1424K

If during fabrication of the fuel rod the gap had contained 1 atm He instead of
10 atm, the gap gas composition would have been 84% Xe. kgap would have been
reduced to 0.0125Wm−1 K−1 and ∆Tgap would have been an unacceptable 1524K.

5.4 Gap closure on initial heatup

There are two causes of fuel-cladding gap closure at startup: thermal expansion and
fuel cracking. Here we deal in detail only with the first.

The change in gap width upon fuel and cladding expansion is given by

∆δgap = δgap − δogap = ∆RC −∆RF

The superscript o indicates as-fabricated value. ∆RC is the change in mean cladding
radius, and ∆RF is the change in the fuel-pellet radius, both as a result of the
temperature increase on startup in the reactor. The radial strain of the fuel in a
parabolic temperature profile is given by

∆RF

RF
= αF(TF − Tfab)
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1 2 3 4 5 6
Initial TS 680 690 700 710 720 715

T0 = TS + LHR/(4πkF) 1078 1088 1098 1108 1118 1113
TF = 1/2(Ts + T0) 879 889 899 909 919 914

RF = R
◦
F[1 + αF(TF − Tfab)] 0.5036 0.5037 0.5038 0.5039 0.5040 0.5040

δgap = Rc − δC/2−RF 54 53 52 51 50 50
hgap = kHe/δgap 0.469 0.475 0.482 0.489 0.496 0.493

TS = TCI +
LHR

2πR◦
Fhgap

720 718 717 716 714 715

Table 5.1: Trial-and-error solution

where TF is the average fuel rod temperature. Tfab is the fuel fabrication temper-
ature, and αF is the coefficient of thermal expansion of UO2. The corresponding
increase for the cladding is approximately equal to

∆RC

RC
= αC(TC − Tfab)

An approximation to the change in gap width upon heating is given by

∆δgap = δhotgap − δfabgap = R
◦
CαC(TC − Tfab)−R

◦
FαF(TF − Tfab) (5.14)

The uncertainty in Eq. 5.14 is the mean fuel temperature, TF, which is a function
of the gap thickness, which is the unknown. When

LHR = 15 000Wm−1 δogap = 80µm Tfab = 373K

Since
TCO = 601K TCI = 631K

Then
TC = 615K

If
δC = 0.1 cm

then at T = Tfab = 373K,

R
o

C = 0.5 + 0.008 +
1

2
× 0.1 = 0.558 cm

And we assume that T = TS = 678K

RC = R
o

C[1 + αC(TC − Tfab)] = 0.559 cm

To solve the solution, we can have the iteration approach. Accounting for thermal
expansion of fuel and cladding (and for the different specification of the size of
the as-fabricated gap) increases the calculated at-power gap thickness to 50µm.
This results in a larger temperature drop over the gap and an increase in the fuel-
centerline temperature from 1076K to 1113K. The very significant effect of the
20µm increase in gap thickness is due to the poor thermal conductivity of helium.

Using the vale of 877K and the as-fabricated gap thickness of 80µm, the hot-gap
size from Eq. 5.14 is 54µm. This is only 4µm larger than the value calculated from
former context. Unless high accuracy is required, the approach we used is good
enough.
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Figure 5.2: Upflow of coolant per fuel rod.

The tangential stress in the fuel pellet subject to a radially-constant heat gen-
eration rate is

σθ = − αFEF(LHR)

16π
(
1− νF

)
kF

(
1− 3

r2

R2
F

)
EF is the elastic constant of UO2 and νF, its Poisson ratio. The outer 40% of the
pallet is under tensile stress(azimuthal) that, for usual LHRs, exceeds the fracture
stress. A typical cracking pattern is shown in Fig. 1.11.

5.5 Axial Temperature Profile

The calculations in previous section were performed for radial transfer of heat.
Because of temperature differences along the length of the fuel rod, heat is also
transferred in the axial direction. The axial variation of the linear heat rate can be
written as

LHR

(
z

Z0

)
= LHR◦ cos

[
π

2γ

(
z

Z0
− 1

)]
= LHR◦f

(
z

Z0

)

f(x) = cos

[
π

2γ
(x− 1)

]
where z is the axial distance, LHR◦ is the centerline linear heat rate (z/Z0 = 1), and
γ =

(
Zex +Z0

)
/Z0 represents the ratio of the extrapolation distance of the neutron

flux to the fuel-rod half-height. A typical value is γ = 1.3. Angles are expressed in
radians.

Because of the above variation of the LHR and the increasing temperature of
the coolant as it passes through the core, the fuel supports an axial temperature
profile. In Fig.5.2, the rod and associated coolant flow in the z direction, the energy
balance of the circular slice dz is

ṁCPW
dTcool

dz
= LHR

(
z

Z0

)
Integrating from the core entry (z = 0) to height z,

ṁCPW

(
Tcool − T in

cool

)
= Z0

∫ z/Z0

0

LHR

(
z

Z0

)
d

(
z

Z0

)
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Figure 5.3: Axial temperature distributions

where ṁ is the mass flow rate per fuel rod (kg s−1 rod−1), CPW is the coolant specific
heat (J kg−1 K−1) and T in

cool is the inlet coolant temperature. Then

ṁCPW

(
Tcool − T in

cool

)
= Z0 × LHR◦

∫ z/Z0

0

f

(
z

Z0

)
d

(
z

Z0

)
proceed to

Tcool − T in
cool =

1

1.2

Z0 × LHR◦

ṁCPW

{
sin (1.2) + sin

[
1.2

(
z

Z0
− 1

)]}

When
z

Z0
= 1 ṁ = 0.25 kg s−1 rod−1 Z0 = 0.15m

LHR◦ = 15 000Wm−1 CPW = 4200 J kg−1 K−1 T in
cool = 570K

As expected, the highest temperature occurs at the core outlet (z/Z0 = 2). However,
the fuel centerline temperature reaches its maximum above the core midplane in Fig.
5.3.

5.6 Thermal Conductivity

The heat conduction equations derived above apply only when the thermal con-
ductivity is constant, whereas it actually depends on temperature, chemistry and
fuel microstructure. The thermal conductivity of the fuel depends on temperature,
composition and burnup. Knowledge of the thermal conductivity of the fuel, gap,
and cladding is essential to determining the temperature distribution and transient
thermal response of the fuel rod. The thermal conductivity of the fuel also deter-
mines the amount of stored heat in the fuel, which is a consequence of the large
gradients that have to be established to sustain heat flow at steady state.

The thermal conductivity of pure UO2, UO2+x, UO2 with cation impurities (e.g.,
(U,Pu)O2) and irradiated UO2.
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Figure 5.4: Geometry for analysis of effect of pores on thermal conductivity

5.6.1 Thermal conductivity in porous oxide

When uranium dioxide is fabricated into pellets, sintering conditions can be con-
trolled so that the pores initially present are partially eliminated, resulting in solid
with 94% to 96% of the theoretical density of UO2 (10.95 g/cm

3). The pores provide
free space to accommodate fission gases, thus reducing swelling. However, porosity
diminishes the thermal conductivity of the pellet. During irradiation, additional
porosity develops in the form of fission-gas-filled bubbles.

Consider a homogeneous distribution of cube-shaped pores in which a ”unit cell”
consists of the pore and its associated in Fig. 5.4. Two pathways exist for heat flow
along y direction: through the ”pore tube” or through the solid surrounding the
pore tube. On the latter route, the thermal conductivity is that of fully dense
UO2. Heat flow through the pore tube is governed by the thermal conductivity of
a composite of void space and solid. The pore tube and the surrounding solid are
parallel thermal resistances, so the effective thermal conductivity of the unit cell
(i.e. of the fuel) is

kF = (1− f)kox + fkpore tube

where f is the fraction of the cross-sectional area perpendicular to heat flow occupied
by the pore tube and kox is the thermal conductivity of fully dense UO2. kpore tube

represents the series thermal resistances of oxide and the pore, so

1

kpore tube
=

g

kpore
+

1− g

kox

where g is the fraction of the pore tube occupied by the pore. Eliminating kpore tube

between these two equations yields

kF
kox

=
1 + (ξ − 1)(1− f)g

1 + (ξ − 1)g

The right term is a correction factor on the thermal conductivity of 100%-dense
UO2. It depends on the geometry of the pore/solid unit cell (via f and g) and the
ratio of the thermal conductivities of the oxide and the gas in the pore ξ = kox/kpore.
If either f or g is zero, the correction factor is unity. If ξ =∞, the correction factor
is 1− f , or no heat flows through the pore tube.

The porosity of the fuel in Eq. 10.35 of [1] is

P = fg
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and if the pore is a cube,

f = P2/3 and g = P1/3

In terms of the porosity, we have

kF
kox

=
1 + (ξ − 1)

(
1− P2/3

)
P1/3

1 + (ξ − 1)P1/3

When (ξ − 1)P1/3 ≫ 1,
kF
kox

= 1− P2/3

When

• for as-fabricated fuel, P = 0.05,

• the pores are filled with 65% helium and 35% xenon - kpore ≃ 8× 10−2Wm−1

• UO2 thermal conductivity is kox ≃ 3Wm−1 K−1, so ξ = 36.

then we have
kF
kox

= 0.87

That is, a 13% reduction in effective thermal conductivity relative to that of the
solid UO2.

5.6.2 Thermal conductivity variation with temperature

The integration of Eq. 5.1 was performed assuming the thermal conductivity to be
independent of the radial position r. In fact, the thermal conductivity of UO2 varies
significantly with temperature, which in turn varies markedly with radial position.

Rather than a constant, a typical temperature-dependent thermal conductivity
is

kox =
1

A+BT

(
Wm−1 K−1

)
where

A = 3.8+200×FIMA·cm ·K/W B = 2.17×10−4mW−1 = 0.0217×10−4cmW−1

which is a well-known empirical fit of thermal conductivity data, is referred to as
the Halden equation after Norwegian laboratory where these data were generated.
Neglecting porosity

(
kF ≃ kox

)
, the temperatures at the fuel centerline and fuel

surface are related by
1

B
ln

(
A+BT0

A+BTS

)
=

LHR

4π

Numerous correlations of kox have been prepared by Baron[2], which, in addition
to temperature and porosity dependences, include the effects of plutonium and
gadolinium.

To account for the dependence of thermal conductivity on temperature, stoi-
chiometry, and plutonium content, the heat conduction equation would need to be
solved with kox as a function of these variables.

For example, assuming TS = 714K, the centerline temperature can be estimated
by

exp

(
B × LHR

4π

)
= exp

(
0.0217× 200

4π

)
= 1.41
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Figure 5.5: Schematic of boiling curve in an LWR.

A+BTS = 3.8 + 0.0217× 714 = 19.3 T0 =
19.3× 1.41− 3.8

0.0217
= 1081K

which differs T0 from Eq. 5.13. This occurs because the thermal conductivity of
UO2 increases with T and the constant kF = 0.03Wcm−1 K−1 is only a very rough
average.

5.7 Thermal Margins and Operating Limits

A nuclear reactor is different from conventional power plants in one important way:
The central safety tenet in nuclear power plant operation is avoidance of fuel damage
and attendant release of fission products. To avoid fuel damage, the operational
constraints are imposed on maximum fuel centerline temperature. Because the
neutron flux and coolant temperature vary axially and radially through the core, so
do the fuel-rod temperatures.

5.7.1 Critical heat flux

As the outer surface temperature of a heated fuel rod immersed in a constant tem-
perature liquid increases, the mode of heat transfer changes. The typical boiling
curve of LWR is described in Fig. 5.5.

1. When TCO − Tsat < 5 ◦C, a flux q is driven by the temperature difference
between outer surface of cladding and bulk coolant,

q = h
(
TCO − Tsat

)
Using thermalhydraulic properties of the coolant, we have

hdeq
kcool

= 0.023Re0.8Pr0.4

where deq is the equivalent diameter of the flow channel, kcool is the thermal
conductivity of the coolant, and Re and Pr are the Reynolds and Prandtl
numbers.
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One of the main concerns for fuel rods is that the linear heat flux becomes
so high that dryout occurs. Fig. 5.5 shows the rise of the outer cladding
temperature TCO as the heat flux q from the fuel to the coolant increase. At
point B, the onset of nucleate boiling provides greater mixing and heat transfer
to the coolant.

Nucleate boiling begins at point B, a empirical correlation applicable to PWR
conditions for this scheme is

q
(
W/m2

)
= 6
(
TCO − Tsat

)4
The heat transfer through one-phase, liquid water.

2. The regime between B to C, the mechanism of heat transfer from the cladding
outer surface to the bulk coolant is more complex than a one-phase heat
transfer. As the temperature of the cladding outer diameter increases beyond
point B, so too does the bubble concentration in the fluid near the wall. At
a critical point (C), the bubbles coalesce and a continuous film of steam is
formed. Point C is known as the critical heat flux (CHF). In PWRs, this
point is identified as the departure from nucleate boiling(DNB). At this point,
nuclear boiling turns into the very-much-less-efficient film boiling.

3. Beyond point C, the rod is blanketed by steam and the heat flux is severely
decreased as the heat transfer coefficient from cladding to steam is much lower
than that of cladding to water. In Fig. 5.5,

TCO − Tcool =
(
TCO − Tsat

)
+
(
Tsat − Tcool

)
this is because the boiling curves depend upon the difference between the
wall temperature and the saturation temperature, not the bulk coolant tem-
perature. In a PWR, Tsat = 615K. A typical cladding OD temperature is
TCO ≃ 633K.

4. Above point C, the bubble nucleation rate becomes high enough that a contin-
uous vapor film forms at the surface. In this region the heat transfer becomes
very unstable and the temperature of the wall can suddenly change to one in
the film-boiling regime.

The departure from nucleate boiling ratio (DNBR) is the ratio of the heat flux that
causes dryout (CHF) to the actual heat flux. The DNBR scales with the incidence
of fuel damage when these margins are obtained by calculations. In an operating
nuclear power plant, the DNBR for the hottest channel is larger than 1.15 to 1.3,
or a margin of 15% to 30%. As shown in Fig. 5.6, the hottest channel the location
where the heat flux most closely approached the critical heat flux. When the critical
heat flux is reached, the wall temperature increases precipitously, typically above
1100K, and cladding failure is certain. To avoid reaching the critical heat flux,
thermal margin are established. When that happens the liquid can only contact the
cladding when the temperature is cooled down to point D in Fig. 5.5.

The mechanism above is prevalent in PWRs, in which a majority of the liquid
phase is present where bubbles are generated. A dryout condition can then occur as
a combination of droplet entrainment and evaporation takes place, at which point
the flow becomes vapor with entrained droplets. The heat transfer then decreases
abruptly, and a critical heat flux condition is again reached, this time by a dryout
mechanism.
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Figure 5.6: Departure from nucleate boiling limits.

5.7.2 Pellet-cladding mechanical interaction

Early reports of fuel failures by pellet-cladding mechanical interaction(PCMI) first
appeared in the 1960s. If the linear heat rate is suddenly increased, the pellet-
cladding gap closes and the fuel mechanically loads the cladding. If the resulting
tensile stress in the cladding is high enough, failure can occur. This frequently oc-
curs in fuel rods adjacent to a recently withdrawn control rod, which causes a sudden
LHR increase. The PCMI mechanism is exacerbated when the fuel is cracked or
when there is missing chip on the fuel surface, which tends to localize the defor-
mation in the cladding. With longer exposure, the cladding becomes increasingly
brittle, so that failure occurs at a smaller imposed strain.
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