
Chapter 4

Crystal interface and
microstructure

4.1 Surface tension at interface

A theoretically infinite system has no interfaces. However, every system we are
interested in engineering has a finite size. Even if it is very large. To have a finite
size is to have an end, which in other words means to have an interface. From a
thermodynamic point of view, there is an interface energy that corresponds to an
interface. Assuming Gibbs free energy G0 of the system that does not consider the
interface, the free energy G of the system when the interface is considered is given
as follows.

G = G0 +Aγ

where A is area of interface and γ is interface energy per area. Then, we have

dG = γdA+Adγ

Since the interface has excess energy, the surface tension is applied when the area
of surface changes,

F = −∂G

∂A
n̂

and it acts inwardly, towards the body of the object where n̂ is surface(interface)
normal(outward). Therefore,

F = |F| = ∂G

∂A
= γ

which the unit of surface tension is

J

m2
=

N

m

4.2 Interface shape

4.2.1 Gibbs-Wulff theorem

When there are many segments of interface, we can represent the interface energy
by

Gi =
∑
j

γjOj
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Figure 4.1: The triangular pyramid which consists of three points at interface seg-
ment and center of the crystal.

where γj is interface energy of j-th segment and Oj is the area for j-th segment. In
Fig. 4.1 At given volume, assuming that γj is predetermined,

δ
(∑

j

γjOj

)
V
=
∑
j

γjδOj = 0

If you connect each vertex of the interface segment (assuming it is a triangle) from
the center of the crystal, a triangular pyramid will come out. Draw a line perpen-
dicular to the interface segment from the center and let the distance be hj . Since
the volume

V =
1

3

∑
j

Ojhj

Then we have

δV =
1

3

∑
j

[
δOjhj +Ojδhj

]
= 0

When we assume that hj is also constant, we have that∑
j

δOjhj = 0

to make the volume conserved. For the interface energy minimization,∑
j

δOjγj = 0

To make the both conditions true, the case is

hj = λγj

therefore, we found that when hj is proportional to the γj , the interface energy is
minimized at given volume.

If the surface tension depends on the direction, the process depicted in Fig. 4.2,
we can predict the equilibrium shape of domain. The equilibrium shape (blue line)
in Fig. 4.2 is known as Wulff construction.

4.3 Boundaries in Single-phase solids

Single phase materials are homogeneous in composition. However, even excluding
the surface, there are many boundaries within it, which is the boundary that sepa-
rates two regions with different crystallographic orientations, which is called a grain
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Figure 4.2: Schematic procedure to construct Wulff construction.

Figure 4.3: The relative orientations of the crystals and the boundary forming (a)
a tilt boundary (b) a twist boundary.

boundary. In other words, a region with the same crystallographic orientation is
called a grain. The properties of this interface are very important for predicting
the properties of materials. There is a very large amount of content here, and this
course aims to examine some of the central theories.

4.3.1 Low angle grain boundary

Low angle boundary means a boundary formed by two grains with a small difference
in crystallographic orientation. There are two types of low angle boundaries, tilt
boundary and twist boundary as shown in Fig. 4.3. Typically, we classify the
boundary as low angle grain boundary (LAGB) when misfit angle is lower than 10◦-
15◦. Low angle grain boundaries are usually described as periodic arrays of edge
dislocations. The spacing of dislocations in Fig. 4.4 is

D =
b

sin θ
≃ b

θ
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Figure 4.4: (a) Low-angle tilt boundary. (b) Low-angle twist boundary.

Figure 4.5: Variation of grain boundary energy with misorientation θ

When D is very large (small θ) the grain boundary energy is proportional to the
misfit angle

γ ∝ θ

As D decreases, the strain fields for each dislocation cancel out so that γ increases
at a decreasing rate in Fig. 4.5.

4.4 High angle grain boundary

For high angle grain boundary, atomic structure is not fully understand so far.
Still many debating, and we generally assume that the grain boundary energy is
relatively constant with respect to the misorientation angle. A high angle grain
boundary (HAGB) has open structure and it generally have higher grain boundary
energy comparing to the LAGB. However, in some special cases, there are cases
where the grain boundary energy is much lower than that of the random boundary,
and a twin boundary exists typically.

4.4.1 Special high grain boundary

As shown in Fig. 4.6, a coherent twin boundary has significantly low energy compar-
ing to the incoherent twin boundary. Twin orientation in FCC metals correspond



CHAPTER 4. CRYSTAL INTERFACE AND MICROSTRUCTURE 57

Figure 4.6: Coherent and incoherent twin boundary. Twin boundary energy as a
function of the misorientation.

Crystal CTBE ITBE GBE
Cu 21 498 623
Ag 8 126 377

Fe-Cr-Ni (SS304) 19 209 835

Table 4.1: CTBE(Coherenet Twin Boundary energy), ITBE(Incoherenet Twin
Boundary energy), GBE(Grain boundary energy).

to a misorientation of 70.5◦ about ⟨110⟩ axis. A measured grain boundary energy
function of misorientation is shown in Fig. 4.7.

4.5 Grain growth

4.5.1 Force balance at triple junction

When three different grain boundaries meet at a triple junction as shown in Fig.
4.8, the relationship between grain boundary energies are

γ1
sin θ1

=
γ2

sin θ2
=

γ3
sin θ3

When grain boundary energy is isotropic (γ1 = γ2 = γ3),

θ1 = θ2 = θ3 = 120◦

4.5.2 Stable configuration of grains in 2D with isotropic grain
boundary energy

As numbers of neighboring grains are from 3, 4, 6 and 7, to meet the 120◦ condi-
tion, the boundary have to be convex or concave without the case when number of
neighboring grains is 6 in Fig. 4.9. We can generally say, when the grain boundary
energy is isotropic,

dA

dt
= k(n− 6)
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Figure 4.7: Schematic grain boundary energies for symmetric tilt boundaries in Al
(a) when the rotation axis is parallel to (100), (b) when the rotation axis is parallel
to (110).

Figure 4.8: The balance of grain boundary energy at triple junction

Figure 4.9: Two dimensional grain boundary configurations.
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Figure 4.10: Two-dimensional cells of a soap solution illustrating the process of
grain growth. Numbers are time in minutes.

Figure 4.11: 3D grain structure obtained from the phase-field modeling.

when A is grain area an n is number of neighboring grains in two-dimensional
system. We say the relation is von Neumann-Mullins relation.

4.5.3 Grain growth kinetics

As illustrated in Fig. 4.10, average area of soap bubble increases as time evolves.
The grain growth means the phenomena where average grain size increases as time
proceeds. The main driving force of the grain growth is the grain boundary energy
minimization. Small grains eliminate and larges grains are getting bigger. Since the
chemical potential difference by the surface tension is described by Gibbs-Thomson
effect which is

∆µ = ∆G =
2γVm

r

where γ is the surface tension and r is radius of the grain. Once the grain becomes,
chemical potential increases, therefore, the grain becomes highly unstable. The
overall kinetics can be evaluated

dD

dt
= αM

2γ

D
→ D2 = D2

0 + 4αMt
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Figure 4.12: Frequency with respect to grain size at different time t1, t2, t3

4.5.4 Self-similarity

Although not strictly scientifically proven, it is assumed that the size of grains in
the microstructure in which grain growth occurs are not all the same, and their
distribution has a consistent shape with time. However, it is explained that the
average grain size increases with time as shown in Fig. 4.12.

4.5.5 Mean field approach proposed by Hillert

n is average number of neighboring grains (sides) in 2D,

n = 6 + 6α

(
R

Rcr
− 1

)
where R is size of grain. When

R > Rcr

the grain growth and when
R < Rcr

grain shrinks. Of course it is simplified approach and we say it is mean-field ap-
proach. However, full-scale complex system consideration is too challenging. After
some calculation,

du2

dτ
= γ(u− 1)− u2

where

u =
R

Rcr

γ = 2αMσ(dt/dR2
cr)

τ = lnR2
cr

The the probability distribution function is

P (u) =
βu

(2− u)2+β
(2e)β exp

(
− 2β

2− u

)
For two-dimensional system β = 2 and three-dimensional system β = 3. After some
more treatment, we can get frequency f(ρ) in 2-D function of ρ = r/ < r >.

f(ρ) =
23e2ρ

(2− ρ)4
exp

(
−4
2− ρ

)
Reference: Hillert, Mats. ”On the theory of normal and abnormal grain growth.”

Acta metallurgica 13.3 (1965): 227-238.
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Figure 4.13: Hillert distribution in 2D and 3D.

4.6 Interface between two different phases

4.6.1 Coherent interfaces

The lattice parameter is generally different, when the interface is fully coherent (two
crystals match perfectly) as shown in Fig. 4.14 and the magnitude of misfit strain
(more comprehensively eigenstrain) is function of difference between difference of
lattice parameters α and β phase. The interfacial energy of the coherent interface
can be represented by γch, which is approximately 200mJ/m2. The misfit strain is
typically written by

ε0ii(r) =
aα − aβ

aα
f(r)

where aα is the lattice parameter of matrix phase and aβ is the lattice parameter
of precipitated phase. f(r) function is 1 in β phase and 0 in α phase. Without
detailed discussion, elastic strain, εelij(r) is given by

εelij(r) = εij(r)− ε◦ij(r)

where εij(r) is total strain and the elastic (strain) energy in coherent interface energy
is

γel =
1

2
Cijkl(r)ε

el
ij(r)ε

el
kl(r)

We generally assume that interface energy of the coherent interface can decompose
into two terms

γch = γgrad + γel,ch

where γgrad term is associated with concentration gradient. ’ch’ subscript emphasize
that it is the elastic energy of the coherent interface. For isotropic materials, we
can assume that

ε◦11(r) = ε◦22(r) = ε◦33(r) = ε
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Figure 4.14: Fully coherent interface with lattice mismatch.

Figure 4.15: Semi coherent interface with lattice mismatch and interface dislocation.

inside the precipitated phase. For isotropic materials, we generally say that

γel = 4µε2 (4.1)

where µ is shear modulus, which is unit of

Pa = J/m3

.

4.6.2 Semicoherent interfaces

When magnitude of the misorientation (ε) increases, the elastic energy is too high
to afford. As shown in Fig. 4.15, in the presence of the interface dislocation,
lattice distortion can be reduced. With presence of the interface dislocation, not all
atomic planes are coherent, therefore, we classify this type of the interface as the
semicoherent interface. The semicoherent interface energy (γsch) can be represented
by

γsch = γgrad + γel,sch + γdc

where γdc is the dislocation core energy. In terms of the thermodynamics, the
transition between coherent interface to the semicoherent interface occurs when

γel,ch < γel,sch + γdc

with assumption that gradient energy does not depend on the type of interface. The
typical value of the semicoherent interface is 200mJ/m2-500mJ/m2.
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Figure 4.16: An α precipitate at a grain boundary triple point in an α−βCu-In alloy.
A, B interfaces are coherent interface and C interface is semicoherent interface.

Figure 4.17: The origin of misfit strain between precipitate and matrix.

4.6.3 Incoherent interfaces

For incoherent interface, since there is no coherency across the interface, elasticity
is not present for the case of incoherent interface. Only presence of the gradient
energy is assumed and typical range of the energy is above 500mJ/m2.

4.7 Morphology of precipitate

In solid state materials, different type of phase present in the limited region, we
classify it as precipitate in the view point of microstructure. Comparing interface
between matrix(βCu-In) and precipitate (β) in Fig. 4.16, semicoherent interface
is relatively straight whereas coherent interface is curved. With assumption of
isotropic crystal structure, the volumetric elastic energy can be estimated from
Eq. 4.1.

∆Gel = 4µε2V

where V is the volume of the precipitate. The misfit strain by the precipitate
by lattice mismatch is illustrated in Fig. 4.17. Since the gradient term of the
concentration and other structural parameters associated with surface, volumetric
interface energy between spherical precipitate (radius r) and matrix phase is

∆Gint,ch = 4µε2 · 4
3
πr3 + 4πr2 · γgrad

For semicoherent interface,

∆Gint,sch = 4πr2 · (γgrad + γdc)

since the interface dislocation is placed on the surface. Therefore, we expect that
there can be transition from the coherent interface to the semicoherent interface as
shown in Fig. 4.18.



CHAPTER 4. CRYSTAL INTERFACE AND MICROSTRUCTURE 64

Figure 4.18: Schematic plot of interface energy with respect to radius r for coherent
and semi coherent interface.


