
Chapter 1

Elasticity and Thermal Stress

1.1 Elastic and Plastic deformation

When a force is applied to an object, it deforms. Of course, some objects are
deformed a lot, and some objects are so deformed that they are barely recognizable.
The amount of this deformation is a characteristic property of an object. Elastic
deformation means that an object is deformed while a force is applied and returns
to its original shape when the force is removed. Therefore, this deformation is
sometimes referred to as a ”reversible deformation”. If a lot of external force is
applied, it may not return to its original shape even if the force is removed. In
this case, we call this plastic deformation. You can think of elasticity theory as an
academic field that deals with the elastic deformation of objects. It is a concept that
I think you have already encountered in previous classes, such as solid mechanics.

1.2 Stresses and Strains

Fig. 1.1 shows a cross-sectional area rod A acting by force F . All planes per-
pendicular to the rod’s axis experience the same force. The stress in place a − a′

is

σn =
F

A

The stress is called normal (subscript n) if it acts in the direction perpendicular to
the stressed plane. The stress that tends to pull the atomic planes apart is termed
tensile. If the force F is applied in opposite directions, the solid will be squeezed
together. This stress is called compressive. By convention, tensile stresses are
positive and compressive stresses are negative. In Fig. 1.2, the force F is applied on
the top plane in the y direction. The stress is generated parallel to the surface rather
than perpendicular to the surface. This stress is termed a shear stress (subscript s).

σs =
F

A

If the applied load (force) is not purely normal or purely shear, arbitrarily oriented
planes in the body will experience both normal and shear stress components.
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Figure 1.1: Normal stress

Figure 1.2: Shear stress
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1.2.1 Notation for stresses

In general, any point within a solid subjected to one or more loads may have up
to six stress components. Notation σn or σs is a simplified version. In principle,
we represent stress by σij where i is the plane on which the stress component acts
and j is its direction. i and j can be x, y, z in cartesian coordinate and r, θ, z in
cylindrical coordinate, r, θ, ϕ in spherical coordinate. The stress indicated σ in Fig.
1.1 is σxx; it acts on the y − z plane.

All normal stresses bear the generic designation σii, which is often shortened to
σi. In three dimensions, there are at most three non-zero normal components of the
stress at a point.

The proper designation of the shear stress components cannot be reduced to a
single subscript because i and j in σij are always different.

1.2.2 Displacements and strains

Displacements are changes in the position of a point in a body between the un-
stressed and stressed states. The strain is a fractional displacement. In common
with stresses, displacements and strains come in two varieties, normal and shear.

Fig. 1.1 shows the normal displacements u and v in the x and y directions. The
original dimensions of the piece are Lo and wo. The solid rectangle represents the
stress-free solid, and the dashed rectangle represents its shape following application
of the axial force. The displacement u (positive) corresponds to the outward move-
ment of the horizontal surfaces, and the displacement v (negative) represents the
shrinkage of the sides of the body.

The strains in the x and y directions are defined as fractional displacements:

εx =
u

L0
εy =

v

w0

In Fig. 1.2, a shear displacement v resulting from a force F acting on the side
of the body at a distance L0 from the fixed bottom. The shear strain is defined as
the ratio of these two lengths:

εxy =
v

L0

1.2.3 Generalization of strain definition

The stress notation can be generalized for stress analyzes.

Cylindrical coordinate

In cartesian coordinate, we can have the position vector by

s⃗ = xî+ yĵ + zk̂

the position vector can be represented by

s⃗ = r cos θî+ r sin θĵ + zk̂

in Fig.1.3. The unit vector along the radial direction in cylindrical coordinate is
given by r̂,

r̂ =
∂s⃗

∂r
= cos θî+ sin θĵ
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Figure 1.3: Position vector of s⃗(x, y, z) and quantity r and θ.

Figure 1.4: Position vector of s⃗(x, y, z) and quantity r, θ and ϕ.
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Figure 1.5: The schematic plot of r̂ and θ̂

the position vector along θ direction is

θ⃗ =
∂s⃗

∂θ
= −r sin θî+ r cos θĵ

therefore, the unit position vector along θ direction is

θ̂ =
1

r

∂s⃗

∂θ
= − sin θî+ cos θĵ

The schematic plots of r̂ and θ̂ are visualized in Fig. 1.5. In spherical coordinate,

s⃗ = r sin θ cosϕî+ r sin θ sinϕĵ + r cos θk̂

The unit vector along radial direction in spherical coordinate is

r̂ =
∂s⃗

∂r
= sin θ cosϕî+ sin θ sinϕĵ + cos θk̂

Also,

θ̂ =
1

r

∂s⃗

∂θ
= cos θ cosϕî+ cos θ sinϕĵ − sin θk̂

and

ϕ̂ =
1

r sin θ

∂s⃗

∂ϕ
= − sinϕî+ cosϕĵ

The derivative is

∂r̂

∂θ
= cos θ cosϕî+ cos θ sinϕĵ − sin θk̂ = θ̂ (1.1)

∂r̂

∂ϕ
= − sin θ sinϕî+ sin θ cosϕĵ = sin θϕ̂ (1.2)

Del operator

The differential operator in three-dimensional system in cartesian coordinate is

∇ =
∂

∂x
î+

∂

∂y
ĵ +

∂

∂z
k̂

in cylindrical coordinate is

∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

∂

∂z
k̂ (1.3)

in spherical coordinate is

∇ =
∂

∂r
r̂ +

1

r

∂

∂θ
θ̂ +

1

r sin θ

∂

∂ϕ
ϕ̂ (1.4)
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Figure 1.6: Definition of Normal stress

Normal strain

In Fig. 1.6 shows a deformation in the x direction. The original length of the body
OB is taken to be a differential element dx. Upon application of a normal stress,
the displacement of the bottom and top surfaces is

OA = ux BC = ux +

(
∂ux

∂x

)
dx

The strain is
BC −OA

OB
=

∂ux

∂x
= εxx = εx

Consistently, we can define

εyy = εy =
∂uy

∂y
εzz = εz =

∂uz

∂z

in cylindrical coordinate, assume only the displacement along r direction

u = ur(r, θ)r̂

εrr = εr =

∣∣∣∣∂u∂r
∣∣∣∣ = ∂ur(r, θ)

∂r

the hoop strain, with Eq. 1.1, εθθ = εθ is

εθθ = εθ =
1

r

∣∣∣∣∂u∂θ
∣∣∣∣ = 1

r

∂ur(r, θ)

∂θ
+

ur(r, θ)

r

When radial displacement, ur(r, θ) does not have θ dependence, i.e. has polar
symmetry, we have

εθθ =
ur(r)

r
(1.5)

For spherical geometry, with spherical symmetry, with Eqs. 1.1 and 1.2,

εr =
∂ur(r)

∂r
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Figure 1.7: Definition of Shear stress

εθ =
1

r

∣∣∣∣∂u∂θ
∣∣∣∣ = ur(r)

r

εϕ =
1

r sinϕ

∣∣∣∣∂u∂ϕ
∣∣∣∣ =

�
�

��∂ur(r)

∂ϕ
+

ur(r)

r
=

ur(r)

r

where ur(r) is the radial displacement, ϕ is the polar angle, and θ is the azimuthal
angle.

Shear strain

In Fig. 1.7, the lower left corners of the original and deformed figure are superim-
posed at the point O. We have

uy = AB =

(
∂uy

∂x

)
dx

Proceed to

tanα ≃ α =
AB

dx
=

∂uy

∂x

tanβ ≃ β =
CD

dy
=

∂ux

∂y

Therefore, the shear strain is

εxy = εyx =
α+ β

2
=

1

2

[
∂uy

∂x
+

∂ux

∂y

]

1.3 Equilibrium conditions

In two-dimensional system, the net force along x direction, the force on the system(
σxx +

∂σxx

∂x
dx− σxx

)
dy +

(
σyx +

∂σyx

∂y
dy − σyx

)
dx = 0

It proceed to
∂σxx

∂x
+

∂σyx

∂y
= ∇ · σ = 0
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In axisymmetric cylindrical coordinates, the radial equilibrium condition is

∂σrr

∂r
+

σrr − σθθ

r
+

∂σrz

∂z
= 0 (1.6)

and for the z direction it is

1

r

∂(rσrz)

∂r
+

∂σzz

∂z
= 0

In spherical coordinates with spherical symmetry, the radial equilibrium condition
is

∂σrr

∂r
+ 2

σrr − σθθ

r
= 0

and by symmetry,
σθθ = σϕϕ

1.4 Stress-Strain Relations

For isotropic materials, the Young’s modulus E is given by

E =
σxx

εxx
=

σyy

εyy
=

σzz

εzz

When more than one normal stresses act on a body, the Poisson’s ratio is given by,
assume the positive strain is applied along x direction,

ν = − εyy
εxx

= − εzz
εxx

The relations between stress-strain are

εxx =
1

E

[
σxx − ν

(
σyy + σzz

)]
(1.7a)

εyy =
1

E

[
σyy − ν

(
σxx + σzz

)]
(1.7b)

εzz =
1

E

[
σzz − ν

(
σxx + σyy

)]
(1.7c)

For shear stresses and strains

εxy =
σxy

G
εxz =

σxz

G
εyz =

σyz

G

where G is the shear modulus. From Eqs. 1.7a to 1.7c, we have

εxx + εyy + εzz =
1− 2ν

E

(
σxx + σyy + σzz

)
(1.8)

For shear stresses and strains

εxy =
σxy

G
εxz =

σxz

G
εyz =

σyz

G

where G is the shear modulus. Assume the pure shear state,

σxx = σ σyy = −σ σzz = 0
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Figure 1.8: Average stresses in a thin-wall cylinder.

then we have

εxx =
σ

E
(1 + ν) εyy = − σ

E
(1 + ν) εzz = 0

The shear strain is

εxy = γmax = 2εxx =
2σ

E
(1 + ν)

The shear modulus is

G =
σxy

εxy
=

σ

εxy
=

E

2(1 + ν)

The mean hydrostatic stress σh is

σh = σxx + σyy + σzz

The volume after deformation is Vf and the volume before deformation is V , then

Vf

V
= 1 + εxx + εyy + εzz

1.5 Thin-wall cylinders

If the radius of a hollow cylinder is much larger than thickness of the wall, we can
apply thin-wall approximation. In Fig. 1.8, a cross section of a thin-wall cylinder
of radius R and wall thickness δ that is internally stressed by a pressure p. The
pressure acts radially on the inner surface and so must be resolved in the vertical
direction to balance the azimuthal stress acting on the midplane section of the tube
wall. The force

Fp =

∫
dFp = pR

∫ π

o

sin θdθ = 2pR

At equilibrium, Fp is opposed by the hoop(circumferential) stress on the area δ on
both sides of the cross section.

Fs = 2δσθθ

Since
Fp = Fs

it proceeds to

2pR = 2δσθθ → σθθ =
pR

δ

σθθ is called the hoop or circumferential stress. The force exerted on the closed top

πR2p
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is balanced by the tensile force in the thin wall,

2πRδσzz

the axial stress is

σzz =
pR

2δ
(1.9)

it is easily shown that the hoop stress is twice greater than the axial stress.

1.6 Thick-wall cylinders

From Eq. 1.5,

dεθθ
dr

=
d

dr

(
ur

r

)
=

1

r

(
dur

dr
− ur

r

)
=

εrr − εθθ
r

(1.10)

From Eqs. 1.7a to 1.7c,

E
dεθθ
dr

=
dσθθ

dr
− ν

(
dσrr

dr
+

dσzz

dr

)
(1.11a)

E
dεzz
dr

=
dσzz

dr
− ν

(
dσrr

dr
+

dσθθ

dr

)
= 0 (Plane strain) (1.11b)

Eliminate dσzz/dr from Eq. 1.11a with Eq. 1.11b,

E
dεθθ
dr

= (1− ν2)
dσθθ

dr
− ν(1 + ν)

dσrr

dr
(1.12)

Eq. 1.11b is known by the plane strain condition. Subtract Eq. 1.7b and Eq. 1.7a,

E(εrr − εθθ) = (1 + ν)
(
σrr − σθθ

)
(1.13)

Insert the Eqs. 1.12 and 1.13 into Eq. 1.10,

(1− ν)
dσθθ

dr
− ν

dσrr

dr
− σrr − σθθ

r
= 0 (1.14)

From Eq. 1.6 with σrz = 0,

σθθ = σrr + r
dσrr

dr

dσθθ

dr
=

d2σrr

dr2
+ 2

dσrr

dr
(1.15)

Substitute Eqs. 1.15 into Eq. 1.14,

r
d2σrr

dr2
+ 3

dσrr

dr
= 0

Proceed to
d

dr

(
r3

dσrr

dr

)
= 0 (1.16)

The boundary conditions are given, at r = R0, the outer radius of the cylinder

σrr

(
r = R0

)
= 0

at r = R, the inner radius of the cylinder

σrr(r = R) = −p
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The solution of Eq. 1.16 is

σrr = −p (R0/r)
2 − 1

(R0/R)2 − 1
(1.17)

With Eq. 1.15,

σθθ = p
(R0/r)

2 + 1

(R0/R)2 − 1
(1.18)

With complete axial restraint, the axial strain is zero,

εzz = 0

From Eq. 1.7c,

σzz = p
2ν

(R0/R)2 − 1

which is tensile, independent of r, and smaller than σθθ.
When there is no axial stress, then

σzz = 0

When the axial stress is obtained by equating the force on the inner surface of
the upper end πR2p, with the counterbalancing force in the annual cross section,
π(R2

0 −R2)σzz.

σzz =
p

(R0/R)2 − 1
(1.19)

In Eq. 1.19, when the thickness of annulus is very thin(
R0

R

)2

− 1 =

(
1 +

δ

R

)2

− 1 ≃ 1 + 2

(
δ

R

)
− 1 =

2δ

R

Then the stress value reduce to Eq. 1.9. Assume that

r = R+
δ

2
→ R0

r
=

R0/R

(R+ δ/2)/R
≃ R0

R

(
1− δ

2R

)
Proceed to (

R0

r

)2

≃
(
R0

R

)2(
1− δ

R

)
Then

(R0/r)
2 − 1

(R0/R)2 − 1
= 1− (R0/R)2(δ/R)

(R0/R)2 − 1
= 1− (R0/R)2(δ/R)

2(δ/R)
= 1− 1

2

(
R0

R

)2

Since
R0

R
= 1 +

δ

R

For very small δ,
(R0/r)

2 − 1

(R0/R)2 − 1
≃ 1

2

therefore, Eq.1.17 reduce to

σrr = −p

2
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1.7 Spherical shapes

For the internally pressurized spherical shapes, the mathematical manipulations of
the elasticity yield

d

dr

(
r4

dσrr

dr

)
= 0

The solution of ODE is

σrr = C1 +
C2

r3

with boundary conditions

σrr(r = R) = −p σrr

(
r = R0

)
= 0

the radial stress is

σrr = −p
(
R0/r

)3 − 1(
R0/R

)3 − 1
(1.20)

the tangential stress is

σϕϕ = σθθ = p
1
2

(
R0/r

)3
+ 1(

R0/R
)3 − 1

(1.21)

In thin-wall limit,
R0 −R = δ ≪ R

Eq. 1.21 reduce to

σ̄θθ =
pR

2δ
(1.22)

which is half of the hoop stress for the thin-wall cylinder.

1.8 Thermal stress

Incorporating thermal stress,

εxx =
1

E

[
σxx − ν

(
σyy + σzz

)]
+ α

(
T − T0

)
(1.23a)

εyy =
1

E

[
σyy − ν

(
σxx + σzz

)]
+ α

(
T − T0

)
(1.23b)

εzz =
1

E

[
σzz − ν

(
σxx + σyy

)]
+ α

(
T − T0

)
(1.23c)

1.8.1 Axis-symmetric cylindrical geometry

The following analysis applies to inifinitely-long cylindrical annuli as well as to solid
cylinders at locations far removed the ends. The temperature is assumed to be
a function of radial position only. The surface temperatures are not functions of
azimuthal angle θ or axial location z. The thermal expansion coefficient is usually
positive, therefore, the hot zone is usually under compression and cold zone is under
tensile. Between these two stressed zones lies a surface of a zero stress.
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Radial stress

With Eqs. 1.10, 1.14, 1.23a and 1.23b,

1

r3
d

dr

(
r3

dσrr

dr

)
= −

(
αE

1− ν

)
1

r

dT

dr
(1.24)

This equation is integrated for a long, thick-wall cylinder with inner radius R and
outer radius Ro. Pressure loading is considered independently, so the boundary
conditions for the thermal-stress state are

σrr(r = R) = σrr

(
r = R0

)
= 0

The result is

σrr =
αE

1− ν

[
1−R2/r2

R2
0 −R2

∫ R0

R

rT (r)dr − 1

r2

∫ r

R

r′T (r′)dr′

]
(1.25)

For a thin-wall cylinder, the approximated solution for temperature profile is ob-
tained by

T (r) = T (R) +
∆T

δ
(r −R) = T (R) + ∆T

R

δ
y (1.26)

where ∆T = T (R0)− T (R), and

y =
r

R
− 1≪ 1 (1.27)

The thin-wall approximation reduces Eq. 1.25 to

σrr =
1

2
∆T

αE

1− ν
y

(
1− R

δ
y

)
(1.28)

Plug Eq. 1.25 into Eq. 1.6 without shear stress, we have the hoop stress

σθθ =
αE

1− ν

[
1 +R2/r2

R2
0 −R2

∫ R0

R

rT (r)dr − 1

r2

∫ r

R

r′T (r′)dr′

]
(1.29)

Apply thin wall approximation in Eqs. 1.26 and 1.27, the hoop stress is

σθθ =
1

2
∆T

αE

1− ν

(
1− 2R

δ
y

)
(1.30)

Axial stress

The axial component of the thermal stress depends on the axial and conditions.
The solution method for no axial restraint is given by below.

1. From Eq. 1.23c with εzz = 0,

σ′
zz(r) = ν

(
σrr + σθθ

)
− αE

[
T (r)− T (R)

]
(1.31)

2. Then cross-section average is

σ̄′
zz =

1

π
(
R2

0 −R2
) ∫ R0

R

2πrσ′
zz(r)dr
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3. Remove axial constraint.

σzz(r) = σ′
zz(r)− σ̄′

zz

For thin-wall cladding, from Eqs.1.31, 1.28 and 1.30, we have

σ′
zz =

1

2
∆T

αE

1− ν
ν

[
y

(
1− R

δ
y

)
+ 1− 2R

δ
y − 2

1− ν

ν

R

δ
y

]
≃ A

(
ν − 2R

δ
y

)
where

A =
1

2
∆T

αE

1− ν

Change integration variable from r to y,

σ̄′
zz = A

(
R

δ

)∫ δ/R

0

(1 + y)σ′
zz(y)dy = A

(
R

δ

)∫ δ/R

0

(1 + y)

(
ν − 2R

δ
y

)
dy

When y ≃ 0,

σ̄′
zz = A

[
ν

(
1 +

1

2

δ

R

)
− 1

]
≃ −A(1− ν)

Finally,

σzz = σ′
zz − σ̄′

zz = A

(
1− 2R

δ
y

)
=

1

2
∆T

αE

1− ν

(
1− 2R

δ
y

)
(1.32)

1.9 Fuel-pellet cracking due to thermal stresses

Assume the uniform volumetric heating in the solid cylinder cooled to temperature
Ts at its periphery (R0) generates a parabolic temperature distribution

T − Ts

T0 − Ts
= 1− r2

R2
0

(1.33)

and
dT

dr
= − 2r

R2
0

(T0 − Ts) (1.34)

Plug Eq.1.34 into Eq.1.24, then

d

dη

(
η3

dσrr

dη

)
= 8σ∗η3

where

σ∗ =
αE(T0 − Ts)

4(1− ν)
η =

r

R0
(1.35)

With the boundary conditions

dσrr

dη
= 0 when η = 0

σrr = 0 when η = 1

the solution is
σth
rr = −σ∗(1− η2) σth

θθ = −σ∗(1− 3η2) (1.36)
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Figure 1.9: Thermal stresses in a fuel pellet under irradiation

The hoop stress is obtained by Eq.1.6 without last term.
Calculating the axial stress distribution is a messy process written on page 393 of

”J. H. Rust, Nuclear Power Plant Engineering (Atlanta: Haralson, 1979)”, leading
to the result:

σth
zz = −σ∗(2− 4η2) (1.37)

The thermal stress solutions satisfy the plane strain condition

dεzz
dr

= 0

only near the midplane of the solid cylinder; the ends satisfy the plane stress con-
dition

dσzz

dr
= 0

Assume the situation, a fuel-pellet sustains a centerline-to-surface temperature dif-
ference of 530K. The properties of UO2 are

1. Young’s modulus: E = 170MPa

2. Poisson’s ration: ν = 0.3

3. Thermal expansion coefficients: α = 1.5× 10−5◦C−1

From Eq. 1.35,

σ∗ =

(
1.5× 10−5

)
× 170× 530

4(1− 0.3)
= 0.5GPa

Fig. 1.9 shows the thermal stress components in the UO2 pellet. The stress at
which UO2 cracks (that is, the toughness of the fracture, 130MPa) is shown as the
horizontal dashed line in the plot. This stress is exceeded by σth

θθ at a fractional ra-
dius of ∼ 0.58, at which point radial cracks appear. Similarly, σth

zz becomes greater
than the fracture stress at r/R0 > 0.75, beyond which horizontal and vertical cracks
extend to the surface of the pellet. The micrographs in Fig. 1.10 show the cracking
pattern that results from the stress distribution in Fig. 1.9. Fig. 1.11 illustrates an-
other consequence of the temperature gradients in the irradiated fuel. The hourglass
shape of the pellet is due to the change from the plane-strain condition near the
midplane to the plane-stress condition at the ends. The ends of the pellets contact
the cladding, resulting in an external shape that resembles a stalk of bamboo or
hourglass.
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Figure 1.10: Schematic illustration of cracking in a UO2 fuel pellet.

Figure 1.11: Schematic of a fuel pellet with a “hourglassing” shape due tothe effect
of thermal stresses
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1.9.1 Pellet expansion

The thickness of the gas-filled gap between the fuel pellet and the cladding tube
strongly affects the heat transfer between these two components and, consequently,
the fuel temperature. The gap thickness decreases from its initial ”cold” value
as a result of the temperature distribution given by Eq. 1.31 during operation.
The reduction in gap thickness is mainly due to thermal expansion of the pellets,
although the wedges of the cracked pellets also tend to move out.

When T = Ts and r = R with boundary condition σrr = 0, from Eq. 1.23b,

εθθ(R) =
1

E

[
σθθ(R)− νσzz(R)

]
+ α

(
Ts − Tref

)
where Tref is the pellet temperature in the cold state. The stresses are obtained
from Eqs. 1.33, 1.36 and 1.37,

σθθ(R) = σzz(R) =
αE(T0 − Ts)

2(1− ν)

Proceed to

εθθ(R) =
∆R

R
= α(T − Tref)

where

T =
1

2

(
T0 + Ts

)
is the average fuel-pellet temperature.

1.9.2 Thermal stress parameter

σ∗ of Eq.1.35 is the basis of a measure of the ability of a material to withstand ther-
mal stresses without cracking. It can be generalized by expressing the temperature
difference in terms of Fourier’s law as

∆T =
qL

k

where q is the heat flux, L is the distance over which ∆T occurs, and k is the
thermal conductivity. The first two of these parameter are operational, in the sense
that they can be changed at will. The thermal conductivity k, however, is a material
property. Substituting the Fourier-law expression for ∆T into the definition of σ∗,
dividing by the fracture stress σF, and omitting the product qL leaves a grouping of
material properties that serves as a general measure of the thermal-stress resistance
of the material:

σF(1− ν)k

αE

called by the thermal stress parameter. Although developed from the solution for
a sold cylinder, the concept is applicable to any geometry, with or without heat
generation. The larger the thermal stress parameter, the more resistant the solid
is to thermal stress failure. The value for Zr cladding is typically ∼ 2× 104Wm−1

and that for UO2 is ∼ 200Wm−1.


