Series lectures of phase-field model 12. Coherent Phase Equilibria

> Kunok Chang kunok.chang@khu.ac.kr

> > Kyung Hee University

December 26, 2024

• The free energy of α - β phase mixture,

$$
F = zF_{\alpha} + (1 - z)F_{\beta} + F_{\text{el}} \qquad 0 \le z \le 1
$$

where F_{α} and F_{β} are the molar free energies of the α and β phases and the phase fraction of α , z and the elastic strain energy arose by misfit strain between α and β phases, F_{el} .

• The composition of bulk alloy c of A-B binary system is

$$
c = zc_{\alpha} + (1 - z)c_{\beta}
$$

where c_{α} and c_{β} are concentrations of B of α and β phases.

As a first assumption,

$$
\varepsilon^{\mathrm{o}} = \frac{a_{\beta} - a_{\alpha}}{a_{\alpha}}
$$

where a_{β} and a_{α} are lattice parameters of β and α phases and the misfit strain is given by

$$
\varepsilon = \varepsilon^{\circ} \left| c_{\alpha} - c_{\beta} \right|^{k}
$$

• The elastic strain energy of isotropic material is assumed by

$$
F_{\rm el} = \frac{z(1-z)VE(\varepsilon^{\circ})^2(\bar{c}_{\alpha} - \bar{c}_{\beta})^{2k}}{1-\nu}
$$

where E is Young's modulus and ν is Poisson's ratio and V is the molar volume in the reference state.

Molar free energy of each phase can be approximately given by

$$
F_{\alpha} = \mu_{\mathsf{A}}^{e} (1 - c_{\alpha}) + \mu_{\mathsf{B}}^{e} c_{\alpha} + a_{0} (c_{\alpha} - c_{\alpha}^{e})^{2}
$$

$$
F_{\beta} = \mu_{\mathsf{A}}^{e} (1 - c_{\beta}) + \mu_{\mathsf{B}}^{e} c_{\beta} + b_{0} (c_{\beta} - c_{\beta}^{e})^{2}
$$

where c^e_α and c^e_β are the compositions of the two phases under the equilibrium and μ_A^e and μ_B^e are chemical potentials of A and B at incoherent equilibrium.

• Introduce the normalized compositions for convenience,

$$
\bar{c}_{\alpha} = 1 - 2\frac{c_{\alpha} - c_{\alpha}^e}{c_{\beta}^e - c_{\alpha}^e} \qquad \bar{c}_{\beta} = 1 - 2\frac{c_{\beta} - c_{\alpha}^e}{c_{\beta}^e - c_{\alpha}^e} \qquad \bar{c} = 1 - 2\frac{c - c_{\alpha}^e}{c_{\beta}^e - c_{\alpha}^e}
$$

Reduced free energy

The reduced free energy

$$
\phi = az(1 - \bar{c}_{\alpha})^2 + b(1 - z)(1 + \bar{c}_{\beta})^2 + Az(1 - z)(\bar{c}_{\alpha} - \bar{c}_{\beta})^{2k} \qquad (1)
$$

where

$$
\phi = F - \left[\mu_{\mathsf{A}}^{e}(1-c) + \mu_{\mathsf{B}}^{e}c\right]
$$

$$
a = a_{0} \frac{\left(c_{\beta}^{e} - c_{\alpha}^{e}\right)^{2}}{4} \qquad b = b_{0} \frac{\left(c_{\beta}^{e} - c_{\alpha}^{e}\right)^{2}}{4}
$$

$$
A = \frac{VE\left(\varepsilon^{\circ}\right)^{2}\left(c_{\beta}^{e} - c_{\alpha}^{e}\right)^{2k}}{2^{2k}(1-\nu)}
$$

The mass conservation requires

$$
\bar{c} - z\bar{c}_{\alpha} - (1 - z)\bar{c}_{\beta} = 0 \tag{2}
$$

To apply Lagrange multiplier, we multiply L and we have

$$
L(\bar{c} - z\bar{c}_{\alpha} - (1-z)\bar{c}_{\beta}) = 0
$$

 $k = 0$ case

For simplicity we assume $a = b = 1$ and $k = 0$. We have

$$
\phi = \phi + L(\bar{c} - z\bar{c}_{\alpha} - (1 - z)\bar{c}_{\beta})
$$

take the derivative with respect to \bar{c}_{α} it have to be 0 to minimize the free energy.

$$
0 = 2z(1 - \bar{c}_{\alpha}) - Lz \tag{3}
$$

Take the derivative with respect to \bar{c}_β

$$
0 = 2(1 - z)(1 + \bar{c}_{\beta}) - L(1 - z)
$$
\n(4)

Take the derivative with respect to z

$$
0 = (1 - \bar{c}_{\alpha})^2 - (1 + \bar{c}_{\beta})^2 + A(1 - 2z) + L(\bar{c}_{\alpha} - \bar{c}_{\beta})
$$
(5)

つひい

By algebraic manipulation, we have the solutions for Eqs. [3](#page-7-1) to [5,](#page-7-2)

$$
\bar{c}_{\alpha} = 1 - \frac{A\bar{c}}{4 - A} \qquad \bar{c}_{\beta} = -1 - \frac{A\bar{c}}{4 - A} \qquad z = \frac{1}{2} + \frac{2\bar{c}}{4 - A} \tag{6}
$$

when \bar{c} is determined, rest of the values are determined.

• With values in Eq. [6,](#page-8-0) the reduced energy in $\alpha + \beta$ two phase region is

$$
\phi_{\alpha+\beta} = \frac{A}{4} - \frac{A\bar{c}^2}{4 - A}
$$

the compositional derivative of ϕ is

$$
\frac{d\phi_{\alpha+\beta}}{d\bar{c}} = -\frac{2A\bar{c}}{4-A}
$$

Since

 $0 < z < 1$

 $\frac{A}{4} < \bar{c} < 1 - \frac{A}{4}$

[4](#page-7-0)

• For $A < 4$.

 $-1 + \frac{A}{4}$

• For $A > 4$,

$$
1 - \frac{A}{4} < \bar{c} < \frac{A}{4} - 1
$$

it is easily shown this solution no longer minimizes ϕ .

 Ω

Incoherent equilibria

For incoherent case,

$$
A=0
$$

it means that

 \leftarrow

 290

Þ

Coherent equilibria

Even though $A \neq 0$,

$$
\bar{c}_{\alpha} - \bar{c}_{\beta} = 2 \qquad 0 \le z \le 1
$$

and when $A > 0$, \bar{c}_{α} and \bar{c}_{β} increase as A increases.

 Ω

Free energy function of alloy compositions

When $A \geq 4$, two phase region does not exist. When $A = 0$, incoherent case, the concentrations of α and β phases are fixed within the region. However, if elasticity exists, $A > 0$, concentrations of two phases are not constant within two phase region.

$k = 1$ case

We set $a = b = 1$ and $k = 1$ in Eq. [1.](#page-6-0) We have the consistent formulation with the case of $k = 0$

$$
\phi = \phi + L(\bar{c} - z\bar{c}_{\alpha} - (1 - z)\bar{c}_{\beta})
$$

take the derivative with respect to \bar{c}_{α} it have to be 0 to minimize the free energy.

$$
0 = 2z(1 - \bar{c}_{\alpha}) - 2Az(1 - z)(\bar{c}_{\alpha} - \bar{c}_{\beta}) - Lz \tag{7}
$$

Take the derivative with respect to \bar{c}_β

$$
0 = 2(1 - z)(1 + \bar{c}_{\beta}) - 2Az(1 - z)(\bar{c}_{\alpha} - \bar{c}_{\beta}) - L(1 - z)
$$
 (8)

Take the derivative with respect to z

$$
0 = \left(1 - \bar{c}_{\alpha}\right)^2 - \left(1 + \bar{c}_{\beta}\right)^2 + A(1 - 2z)\left(\bar{c}_{\alpha} - \bar{c}_{\beta}\right)^2 + L(\bar{c}_{\alpha} - \bar{c}_{\beta}) \tag{9}
$$

つひい

After algebraic manipulation of Eqs. [7](#page-13-0) to [9,](#page-13-1)

$$
A(\bar{c}_{\alpha} - \bar{c}_{\beta})^2 + (1 - \bar{c}_{\alpha})^2 - (1 + \bar{c}_{\beta})^2 - 2(1 + \bar{c}_{\beta})(\bar{c}_{\alpha} - \bar{c}_{\beta}) = 0 \quad (10)
$$

$$
A(\bar{c}_{\alpha} - \bar{c}_{\beta}) - (1 - \bar{c}_{\alpha}) - (1 + \bar{c}_{\beta}) = 0 \quad (11)
$$

which means that \bar{c}_{α} and \bar{c}_{β} are not dependent on \bar{c} . The solution of Eqs. [10](#page-14-0) and [11](#page-14-1) are

$$
\bar{c}_{\alpha} = \frac{1}{A+1} \qquad \bar{c}_{\beta} = -\frac{1}{A+1}
$$

Applying mass conservation in Eq. [2,](#page-6-1)

$$
z = \frac{1}{2} + \frac{A+1}{2}\bar{c}
$$

The minimized ϕ within $\alpha + \beta$ two phase region is

$$
\phi_{\alpha+\beta} = -A\bar{c}^2 + \frac{A}{A+1}
$$

When $z = 1$,

$$
\bar{c} = \bar{c}_{\alpha} \qquad \phi = \phi_{\alpha} = (1 - \bar{c})^2
$$

When $z = 0$,

$$
\bar{c} = \bar{c}_{\beta} \qquad \phi = \phi_{\beta} = (1 + \bar{c})^2
$$

Two phase region exists even if $A > 4$.

4 D F

э

kŀĮu 299

Phase diagram when $k = 1$

The boundary between $\phi_{\alpha+\beta}$ and ϕ_{α} is given by

$$
(1 - \bar{c})^2 = -A\bar{c}^2 + \frac{A}{A + 1}
$$

The double root is given by

$$
\bar{c}_{\alpha/\alpha+\beta} = \frac{1}{A+1}
$$

The boundary between $\phi_{\alpha+\beta}$ and ϕ_{β} is given by

$$
(1 + \bar{c})^2 = -A\bar{c}^2 + \frac{A}{A+1}
$$

The double root is given by

$$
\bar{c}_{\beta/\alpha+\beta}=-\frac{1}{A+1}
$$

it means that two phase region always exists wh[en](#page-15-0) $A \geq 0$ $A \geq 0$ $A \geq 0$ [.](#page-17-0)

KHU $2Q$ 一 (重) 活 **←ロ ▶ ← (伊 ▶** $\overline{4}$ Þ \mathbf{p} Kunok (KHU) [Phase-field model](#page-0-0) December 26, 2024 18/18