Thermodynamics of materials 29. Chemical Phase Equilibria and Phase Diagrams

> Kunok Chang kunok.chang@khu.ac.kr

> > Kyung Hee University

November 4, 2024

Kunok (KHU)

Thermodynamics

Kunok (KHU)

Thermodynamics

• For a single phase solid solution, the schematic chemical potential curve is given as belows:

$$\mu^{\circ}(x_{\mathsf{B}}) = x_{\mathsf{A}}\mu^{s,\circ}_{\mathsf{A}} + x_{\mathsf{B}}\mu^{s,\circ}_{\mathsf{B}}$$

At melting temperature

$$\Delta \mu_{m,\mathsf{A}}^{\circ} = \mu_{\mathsf{A}}^{l,\circ} - \mu_{\mathsf{A}}^{s,\circ} \qquad \Delta \mu_{m,\mathsf{B}}^{\circ} = \mu_{\mathsf{B}}^{l,\circ} - \mu_{\mathsf{B}}^{s,\circ}$$

- Throughout the whole composition range at T_0 , the homogeneous solid solution (ss) phase is the stable equilibrium state, and the liquid phase is not stable.
- In addition, the chemical potential curve of the solid has a positive curvature,

$$\left(\frac{\partial^2 \mu^s}{\partial x_{\mathsf{B}}^2}\right)_{T,p} > 0$$

which implies that the homogeneous solid solution (ss) state is intrinsically stable through the whole composition range, and any two-phase mixture has a higher chemical potential than a homogeneous solution.

• The chemical potential curve of solid solution α shows a double-well shape with both positive and negative curvature regions as a function of composition:

Kunok (KHU)

• In previous slide,

$$\left(\frac{\partial^2 \mu^s}{\partial x_{\mathsf{B}}^2}\right)_{T,p} > 0 \qquad 0 < x_{\mathsf{B}} < x_{\mathsf{B}}^{s'} \qquad x_{\mathsf{B}}^{s''} < x_{\mathsf{B}} < 1$$

$$\left(\frac{\partial^2 \mu^s}{\partial x_{\mathsf{B}}^2}\right)_{T,p} < 0 \qquad x_{\mathsf{B}}^{s'} < x_{\mathsf{B}} < x_{\mathsf{B}}^{s''}$$

When

$$x_{\mathsf{B}}^{\alpha'} < x_{\mathsf{B}} < x_{\mathsf{B}}^{s'} \qquad x_{\mathsf{B}}^{s''} < x_{\mathsf{B}} < x_{\mathsf{B}}^{\alpha''}$$

the solid solution is metastable.

• When liquid-solid are under the equilibrium within certain region

$$x_{\mathsf{B}}^s < x_{\mathsf{B}} < x_{\mathsf{B}}^l$$

and solid and liquid are equilibrium phases

 $x_{\mathsf{B}} < x_{\mathsf{B}}^{s}(\mathsf{solid})$ $x_{\mathsf{B}} > x_{\mathsf{B}}^{l}(\mathsf{liquid})$

• The composition is within region (between red arrows)

$$x_{\mathsf{B}}^s < x_{\mathsf{B}} < x_{\mathsf{B}}^l$$

we have

$$\mu_{\mathsf{A}}^{s}\left(x_{\mathsf{B}}^{s}\right) = \mu_{\mathsf{A}}^{l}\left(x_{\mathsf{B}}^{l}\right)$$

which is left y-intersect,

$$\mu_{\mathsf{B}}^{s}\left(x_{\mathsf{B}}^{s}\right) = \mu_{\mathsf{B}}^{l}\left(x_{\mathsf{B}}^{l}\right)$$

which is right *y*-intersect.

• It means that within two phase region, the concentration of solid and liquid are fixed, respectively. For example, when

$$\mu_{\mathsf{B}}^{s}\left(x_{\mathsf{B}}^{s}\right) = \mu_{\mathsf{B}}^{l}\left(x_{\mathsf{B}}^{l}\right)$$

the solid phase concentration is always x_B^s and that of liquid is x_B^l , on the other hand the phase fraction of liquid increases as x_B increases.

Kunok (KHU)

• When α phase- β phase are under the equilibrium within certain region

$$x_{\mathsf{B}}^{\alpha} < x_{\mathsf{B}} < x_{\mathsf{B}}^{\beta}$$

and liquid is not an equilibrium phase at temperature $T = T_0$. We expect that when temperature increases, the system will achieve eutectic equilibrium, which will be discussed later.

Kunok (KHU)

November 4, 2024

 $\bullet\,$ When α phase and liquid coexist

$$x_{\mathsf{B}}^{\alpha} < x_{\mathsf{B}} < x_{\mathsf{B}}^{E}$$

 α phase, liquid, β phase coexist

$$x_{\mathsf{B}} = x_{\mathsf{B}}^E$$

 β phase and liquid phase coexist

$$x_{\alpha}^E < x_{\mathsf{B}} < x_{\mathsf{B}}^\beta$$

Kunok (KHU)

November 4, 2024

• When the temperature is higher than eutectic temperature T_E ,

 \bullet When α phase and liquid phase $\left(x_{\rm B}^{l'}\right)$ coexist

$$x_{\mathsf{B}}^{\alpha} < x_{\mathsf{B}} < x_{\mathsf{B}}^{l'}$$

then liquid region occurs, and the concentration of liquid increases as $x_{\rm B}$ increases.

$$x_{\mathsf{B}}^{l'} < x_{\mathsf{B}} < x_{\mathsf{B}}^{l''}$$

when $x_{\rm B}$ increases more, liquid phase $\left(x_{\rm B}^{\prime\prime\prime}\right)$ and β phase $\left(x_{\rm B}^{\beta}\right)$ coexist.

$$x_{\mathsf{B}}^{l^{\prime\prime}} < x_{\mathsf{B}} < x_{\mathsf{B}}^{\beta}$$

Kunok (KHU)

• When mutual solubility of A and B of solid phase is negligible, the typical phase diagram is shown as belows:

• At $x_{\mathsf{B}} = x_{\mathsf{B}}^{I}$, as temperature increases,

$$\mathsf{A} + \mathsf{B} \to \mathsf{A} + l(x_\mathsf{B}^E) \to \mathsf{A} + l(x_\mathsf{B}^I) \to l(x_\mathsf{B}^I)$$

• At $x_{\mathsf{B}} = x_{\mathsf{B}}^{E}$, as temperature increases,

$$\mathsf{A} + \mathsf{B} \to \mathsf{A} + \mathsf{B} + l(x_\mathsf{B}^E) \to l(x_\mathsf{B}^E)$$

• At $x_{B} = x_{B}^{II}$, as temperature increases,

$$\mathsf{A} + \mathsf{B} \to \mathsf{B} + l(x_{\mathsf{B}}^{E}) \to \mathsf{B} + l(x_{\mathsf{B}}^{II}) \to l(x_{\mathsf{B}}^{II})$$

Kunok (KHU)

- Both the liquid and solid states exhibit homogeneous solutions in which A and B are completely mutually soluble.
- Upon heating of a A-B solid solution from low temperature, the evolution sequence of equilibrium states at $x_{\rm B}^I$ is

$$ss(x_{\mathsf{B}}^{I}) \to ss(x_{\mathsf{B}}^{I}) + ls(x_{\mathsf{B}}^{l}) \to ss(x_{\mathsf{B}}^{s}) + ls(x_{\mathsf{B}}^{l}) \to ls(x_{\mathsf{B}}^{I})$$

• The eutectic diagram with limited solubility between two solids. When A-B mutual solubility is not negligible, for example at $T = T_{\alpha\beta}$, the solubility of B in A is $x_{\rm B}^I$.

Kunok (KHU)

• The eutectic diagram with limited solubility between two solids. When A-B mutual solubility is not negligible, for example at $T = T_{\alpha\beta}$, the solubility of B in A is $x_{\rm B}^I$.

Kunok (KHU)

• At $x^I_{\rm B},$ temperature is $T_{\alpha\beta}$ and increases very slowly, the equilibrium states are

$$\begin{aligned} \alpha + \beta &\to \alpha \left(x_{\mathsf{B}}^{I} \right) + \beta \left(x_{\mathsf{B}}^{\beta \alpha} \right) \to \alpha \left(x_{\mathsf{B}}^{I} \right) \to \alpha \left(x_{\mathsf{B}}^{I} \right) + l \left(x_{\mathsf{B}}^{l \alpha} \right) \\ &\to \alpha \left(x_{\mathsf{B}}^{\alpha l} \right) + l \left(x_{\mathsf{B}}^{I} \right) \to l \left(x_{\mathsf{B}}^{I} \right) \end{aligned}$$

• At x_{B}^E , when temperature is below then T_E and increases very slowly, the equilibrium states are

$$\alpha + \beta \to \alpha \left(x_{\mathsf{B}}^{\alpha E} \right) + \beta \left(x_{\mathsf{B}}^{\beta E} \right) \to l \left(x_{\mathsf{B}}^{\alpha E} \right)$$

• At $x_{\rm B}^{II}$, temperature is $T_{\alpha\beta}$ and increases very slowly, the equilibrium states are

$$\begin{aligned} \alpha + \beta &\to \alpha \big(x_{\mathsf{B}}^{\alpha E} \big) + \beta \big(x_{\mathsf{B}}^{\beta E} \big) \to l \big(x_{\mathsf{B}}^{E} \big) + \beta \big(x_{\mathsf{B}}^{\beta E} \big) \\ &\to l \big(x_{\mathsf{B}}^{II} \big) + \beta \big(x_{\mathsf{B}}^{\beta l} \big) \to l \big(x_{\mathsf{B}}^{II} \big) \end{aligned}$$