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Chemical Potentials of Ideal Solution

For ideal solution,
µi = µ◦

i +RT lnxi

the chemical energy potential change for one more of species i from
the pure state to solution is

∆µi = RT lnxi

and

∆µ = RT

n∑
i=1

(
xi lnxi

)
Since it is the ideal solution,

∆h = 0
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Chemical Potentials of Ideal Solution

The entropy change for one mole of component i from the pure state
to solution is

∆si = −
(
∂∆µi

∂T

)
p,xi

= −R lnxi

and the entropy of mixing is

∆s = −
(
∂∆µ

∂T

)
p,xi

= −R

n∑
i=1

(
xi lnxi

)
the volume of mixing for an ideal solution is zero

∆v =

(
∂∆µ

∂p

)
T,xi

= 0

Kunok (KHU) Thermodynamics November 5, 2024 5 / 20



Chemical Potentials of Ideal Solution

We have the relations for a binary solution:

µ =
(
xAµ

◦
A + xBµ

◦
B
)
+RT

(
xA lnxA + xB lnxB

)
∆µ = µ−

(
xAµ

◦
A + xBµ

◦
B
)
= RT

(
xA lnxA + xB lnxB

)
∆µA = µA − µ◦

A = RT lnxA

∆µB = µB − µ◦
B = RT lnxB

∆s = −
(
∂∆µ

∂T

)
p,xB

= −R
(
xA lnxA + xB lnxB

)
∆sA = −

(
∂∆µA

∂T

)
p,xB

= −R lnxA

∆sB = −
(
∂∆µB

∂T

)
p,xA

= −R lnxB

Kunok (KHU) Thermodynamics November 5, 2024 6 / 20



Chemical Potentials of Ideal Solution

For volume and enthalpy change

∆vA = −
(
∂∆µA

∂p

)
T,xB

= 0

∆vB = −
(
∂∆µB

∂p

)
T,xA

= 0

∆h = 0
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Chemical Potentials of Regular Solutions

For regular solution,

ai ̸= xi ∆h ̸= 0 ∆s = −R

n∑
i=1

xi lnxi

For a binary regular solution,

RT ln γA = α′x2B RT ln γB = α′x2A

which leads to

µA − µ◦
A = RT lnxA +RT ln γA = RT lnxA + α′x2B

µB − µ◦
B = RT lnxB +RT ln γB = RT lnxB + α′x2A

Kunok (KHU) Thermodynamics November 5, 2024 9 / 20



Chemical Potentials of Regular Solutions

The chemical potential change of forming a binary solution from pure
components is

∆µ = RT
(
xA ln aA + xB ln aB

)
= RT

(
xA ln γA + xB ln γB

)
+RT

(
xA lnxA + xB lnxB

)
= α′(xAx

2
B + x2AxB

)
+RT

(
xA lnxA + xB lnxB

)
= α′xAxB +RT

(
xA lnxA + xB lnxB

)
= ∆h− T∆s

therefore, we have
∆h = α′xAxB

and
∆s = −R

(
xA lnxA + xB lnxB

)
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Chemomechanical Potentials of Components in a Solution

When the lattice parameter follows Vegard’s law,

a(c) = a(c0) +
da

dc
(c− c0)

where a(c0) is the lattice parameter of the solution with the reference
solute concentration c0, and da/dc is the rate of change in lattice
parameter with respect to concentration.
The lattice expansion parameter is

ε0 =
1

a(c0)

da

dc
=

a(c)− a(c0)

a(c0)(c− c0)
=

vm
a(c0)

da

dx

where x is the mole fraction of solute atoms, and vm = x/c is molar
volume of the solution.
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Chemomechanical Potentials of Components in a Solution

The concentration-dependent eigenstrain tensor ε◦ij can be expressed
as

ε◦ij = ε0(c− c0)δij

where δij is the Kronecker delta function.
The elastic strain εel

ij is given by

εel
ij = εij − ε◦ij = εij −

1

a0
(c− c0)δij = εij − ε0(c− c0)δij

where εij is the total strain containing both the elastic strain and
compositional strain.
The total elastic strain, εel

ij , of an inhomogeneous solid solution is
obtained by solving the mechanical equilibrium equation.
We will assume that the local elastic displacements, elastic strains,
and thus the elastic stresses are all available.
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Chemomechanical Potentials of Components in a Solution

The corresponding elastic stresses σel
ij is given by

σel
ij = Cijklε

el
ij

where Cijkl is the elastic modulus tensor.
The chemomechanical potential µcm of solute atoms is given by

µcm = σel
ij

dεel
ij

dc
+ µ = −σel

ijε0δij + µ

where σel
ij is the local elastic stress, and µ is chemical potential of

solute atoms.
The term, −σel

ijε0δij , is therefore the mechanical contribution to the
total chemomechanical potential, µcm.
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Chemomechanical Potentials of Components in a Solution

Consider a relatively simple example on the segregation of solute B
atoms around an edge dislocation for which the elastic solution is
available. Assume the edge dislocation is located at (x = 0, y = 0).
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Chemomechanical Potentials of Components in a Solution

The stress distribution around such an edge dislocation with a Burgers
vector magnitude of B is given by

σel
xx = − Gb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2

σel
yy = − Gb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2

σel
zz = − Gb

2π(1− ν)

y

(x2 + y2)

where G is the shear modulus, and ν is the Poisson ratio.
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Chemomechanical Potentials of Components in a Solution

Therefore, the mechanical contribution to the chemomechanical
potential of solute atoms around an edge dislocation is

−ε0σ
el
ijδij = −ε0

(
σel
xx + σel

yy + σel
zz

)
=

ε0Gb

π

y

(x2 + y2)
=

ε0Gb

π

sin θ

r

where r is the distance from the origin, and θ is the angle from the
positive x-axis.
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Chemomechanical Potentials of Components in a Solution

Assume that the mole fraction of solute B atoms in the solution in the
absence of dislocations or very far away from the dislocation is x◦B and
that the behavior of B atoms can be approximated using ideal solution
model.

µb
B = µ◦

B +RT lnx◦B

where µb
B is the bulk chemical potential without the mechanical

contribution, and µ◦
B is the chemical potential of B at standard state,

i.e., the chemical potential of pure solid B.
In the presence of an edge dislocation,

µσ,d
B = µ◦

B +RT lnxB +
ε0Gb

π

sin θ

r
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Chemomechanical Potentials of Components in a Solution

At equilibrium,
µσ,d

B = µb
B

or
µ◦

B +RT lnxB +
ε0Gb

π

sin θ

r
= µ◦

B +RT lnx◦B

proceed to

RT ln

(
xB

x◦B

)
= −ε0Gb

π

sin θ

r

therefore,
xB

x◦B
= exp

(
− ε0Gb

RT

sin θ

πr

)
where xB is the composition distribution of solute atoms around an
edge dislocation.
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Chemomechanical Potentials of Components in a Solution

If ε0 > 0, it implies that the size of B atoms is larger than that of A
atoms. For a given r, minimum xB takes place at θ = π/2; i.e., solute
B atoms are depleted above the dislocation, and maximum xB takes
place at θ = −π/2; i.e., solute B atoms are accumulated below the
dislocation.
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