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Growth of a precipitate

Diffusion equation (Fick’s 2nd law)

∂c(r, t)
∂t

= D∇2c(r, t)

Mass balance at the interface

dR

dt
(cβ − cα) = D

∂c(r, t)
∂r

∣∣∣∣
r=R(t)

Free boundary problems
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Sharp interface approach

Write one (or many) PDE that holds everywhere, in both phases and at the
interface. Do not need to track the location of the boundary.
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Phase-field model

Conserved order parameter: Cahn-Hilliard equation
Non-conserved order parameter: Allen-Cahn equation
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Derivation of Cahn-Hilliard equation

Cahn-Hilliard (JCP, 1958): Consider the energy associated with
gradients in composition.
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Derivation of Cahn-Hilliard equation

The chemical potential is function of d2c
dx2

f = f

(
c,

dc

dx
,
d2c

dx2
, · · ·

)
By Taylor’s expansion with omitting higher-order terms,

f(c, dc/dx) = f(c, 0) + L
dc

dx
+ κ

(
dc

dx

)2

where
L =

∂f

∂(dc/dx)
κ =

1

2

∂f

∂
(
(dc/dx)2

)
L = 0 for centrosymmetric crystal, f(c) is free energy per volume.

F = A

∫
V

[
f(c) + κ

(
dc

dx

)2
]
dV

Kunok (KHU) Phase-field model November 18, 2024 9 / 15



Derivation of Cahn-Hilliard equation

For 1-D case

F = A

∫ x2

x1

[
f(c) + κ

(
dc

dx

)2
]
dx

δF = A

∫ x2

x1

[
∂f(c)

∂c
δc+ κδ

(
dc

dx

)2
]
dx

= A

∫ x2

x1

[
∂f(c)

∂c
δc+ 2κ

( dc
dx

)
δ

(
dc

dx

)]
dx

By integrating by parts∫ x2

x1

[(
dc

dx

)
δ

(
dc

dx

)]
dx =

dc

dx
δc

∣∣∣∣x2

x1

−
∫ x2

x1

d2c

dx2
δcdx

when dc
dx is 0 when x = x1, x2 then∫ x2

x1

2κ

(
dc

dx

)
δ

(
dc

dx

)
dx = −2κ

∫ x2

x1

d2c

dx2
δcdx
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Derivation of Cahn-Hilliard equation

At equilibrium,

δF

δc
= A

∫ x2

x1

[
∂f(c)

∂c
− 2κ

d2c

dx2

]
dx = 0

therefore,
∂f(c)

∂c
− 2κ

d2c

dx2
= 0

For the case of non-conserved order parameter(η), means no constrain
on the average value of η, we can state

∂f(η)

∂η
− 2κ

d2η

dx2
= 0

For conserved order parameter, such as composition(c), it have to be
conserved ∫ x2

x1

[
c(x)− c0

]
dx = 0

where c0 is the nominal alloy composition.
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Derivation of Cahn-Hilliard equation

Then we have

F = A

∫ x2

x1

[
f(c) + κ

(
dc

dx

)2

− λ
(
c(x)− c0

)]
dx

Take variation

δF = A

∫ x2

x1

[
δ

[
f(c) + κ

(
dc

dx

)2]
− λδ

(
c(x)− c0

)]
dx

= A

∫ x2

x1

[
∂f

∂c
− 2κ

d2c

dx2
− λ

]
δcdx

therefore, we reach the Euler-Lagrange equation

λ =
∂f

∂c
− 2κ

d2c

dx2

λ have to be uniform at equilibrium.
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Derivation of Cahn-Hilliard equation

If λ is not uniform, flux have to be present. Therefore, we can write

JA = −M∇λ = −M∇

(
∂f

∂cA
− 2κ

∂2cA
∂x2

)

where
f = c0[µAcA + µBcB]
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Derivation of Cahn-Hilliard equation

Applying mass conservation equation

∂c

∂t
= −∂J

∂x

=
d

dx
·

[
M

∂

∂x

(
∂f

∂c
− 2κ

∂2c

∂x2

)]

we reach the Cahn-Hilliard equation in one-dimensional system.
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Derivation of Cahn-Hilliard equation

Assume constant mobility,

∂c

∂t
= M

∂

∂x

[
∂

∂x

(
∂f

∂c
− 2κ

∂2c

∂x2

)]

= M
∂

∂x

[
∂2f

∂c2
∂c

∂x
− 2κ

∂3c

∂x3

]

= M

[
∂

∂x

(
∂2f

∂c2
∂c

∂x

)
− 2κ

∂4c

∂x4

]

Unfortunately, closed form of the solution does not exist generally.
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