Series lectures of phase-field model 03. Cahn-Hilliard Equation I

> Kunok Chang kunok.chang@khu.ac.kr

> > Kyung Hee University

November 18, 2024

2 [Cahn-Hilliard Equation](#page-6-0)

• [Derivation of Cahn-Hilliard Equation](#page-7-0)

 \leftarrow

2 [Cahn-Hilliard Equation](#page-6-0)

• [Derivation of Cahn-Hilliard Equation](#page-7-0)

 \leftarrow

Growth of a precipitate

Diffusion equation (Fick's 2nd law)

$$
\frac{\partial c(\mathbf{r},t)}{\partial t} = D\nabla^2 c(\mathbf{r},t)
$$

• Mass balance at the interface

$$
\frac{dR}{dt}(c^{\beta} - c^{\alpha}) = D \frac{\partial c(\mathbf{r}, t)}{\partial r}\bigg|_{r=R(t)}
$$

• Free boundary problems

 Ω

Sharp interface approach

Write one (or many) PDE that holds everywhere, in both phases and at the interface. Do not need to track the location of the boundary.

- Conserved order parameter: Cahn-Hilliard equation
- Non-conserved order parameter: Allen-Cahn equation

2 [Cahn-Hilliard Equation](#page-6-0)

• [Derivation of Cahn-Hilliard Equation](#page-7-0)

 290

Þ

Cahn-Hilliard (JCP, 1958): Consider the energy associated with gradients in composition.

 Ω

The chemical potential is function of $\frac{d^2c}{dx^2}$

$$
f = f\left(c, \frac{dc}{dx}, \frac{d^2c}{dx^2}, \dots\right)
$$

• By Taylor's expansion with omitting higher-order terms,

$$
f(c, dc/dx) = f(c, 0) + L\frac{dc}{dx} + \kappa \left(\frac{dc}{dx}\right)^2
$$

where

$$
L = \frac{\partial f}{\partial (dc/dx)} \qquad \kappa = \frac{1}{2} \frac{\partial f}{\partial ((dc/dx)^2)}
$$

 \bullet $L = 0$ for centrosymmetric crystal, $f(c)$ is free energy per volume.

$$
F = A \int_{V} \left[f(c) + \kappa \left(\frac{dc}{dx} \right)^{2} \right] dV
$$

• For 1-D case $F = A \int^{x_2}$ x_1 $\sqrt{ }$ $f(c) + \kappa \left(\frac{dc}{dx}\right)^2$ dx $\delta F = A \int^{x_2}$ x_1 $\left[\frac{\partial f(c)}{\partial c} \delta c + \kappa \delta \left(\frac{dc}{dx}\right)^2\right]$ dx $= A \int_0^{x_2}$ \overline{x}_1 $\int \frac{\partial f(c)}{\partial c} \delta c + 2\kappa \left(\frac{dc}{dx} \right)$ dx $\Bigl) \delta \biggl(\frac{dc}{dx} \biggr) \Bigl] dx$

• By integrating by parts

$$
\int_{x_1}^{x_2} \left[\left(\frac{dc}{dx} \right) \delta \left(\frac{dc}{dx} \right) \right] dx = \frac{dc}{dx} \delta c \Big|_{x_1}^{x_2} - \int_{x_1}^{x_2} \frac{d^2c}{dx^2} \delta c dx
$$

when $\frac{dc}{dx}$ is 0 when $x=x_1,x_2$ then

$$
\int_{x_1}^{x_2} 2\kappa \left(\frac{dc}{dx}\right) \delta\left(\frac{dc}{dx}\right) dx = -2\kappa \int_{x_1}^{x_2} \frac{d^2c}{dx^2} \delta c dx
$$

Kunok (KHU) Rhase-field model November 18, 2024 10 / 15

• At equilibrium,

$$
\frac{\delta F}{\delta c} = A \int_{x_1}^{x_2} \left[\frac{\partial f(c)}{\partial c} - 2\kappa \frac{d^2 c}{dx^2} \right] dx = 0
$$

therefore,

$$
\frac{\partial f(c)}{\partial c} - 2\kappa \frac{d^2 c}{dx^2} = 0
$$

• For the case of non-conserved order parameter(η), means no constrain on the average value of η , we can state

$$
\frac{\partial f(\eta)}{\partial \eta} - 2\kappa \frac{d^2 \eta}{dx^2} = 0
$$

• For conserved order parameter, such as composition(c), it have to be conserved

$$
\int_{x_1}^{x_2} \left[c(x) - c_0 \right] dx = 0
$$

where c_0 is the nominal alloy composition.

• Then we have

$$
F = A \int_{x_1}^{x_2} \left[f(c) + \kappa \left(\frac{dc}{dx} \right)^2 - \lambda (c(x) - c_0) \right] dx
$$

o Take variation

$$
\delta F = A \int_{x_1}^{x_2} \left[\delta \left[f(c) + \kappa \left(\frac{dc}{dx} \right)^2 \right] - \lambda \delta (c(x) - c_0) \right] dx
$$

$$
= A \int_{x_1}^{x_2} \left[\frac{\partial f}{\partial c} - 2\kappa \frac{d^2 c}{dx^2} - \lambda \right] \delta c dx
$$

therefore, we reach the Euler-Lagrange equation

$$
\lambda = \frac{\partial f}{\partial c} - 2\kappa \frac{d^2 c}{dx^2}
$$

 \bullet λ have to be uniform at equilibrium.

4 D F

• If λ is not uniform, flux have to be present. Therefore, we can write

$$
J_{\mathsf{A}} = -M\nabla\lambda = -M\nabla\left(\frac{\partial f}{\partial c_{\mathsf{A}}} - 2\kappa\frac{\partial^2 c_{\mathsf{A}}}{\partial x^2}\right)
$$

where

$$
f = c_0[\mu_{\rm A}c_{\rm A} + \mu_{\rm B}c_{\rm B}]
$$

• Applying mass conservation equation

$$
\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} \n= \frac{d}{dx} \cdot \left[M \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial c} - 2\kappa \frac{\partial^2 c}{\partial x^2} \right) \right]
$$

we reach the Cahn-Hilliard equation in one-dimensional system.

• Assume constant mobility,

$$
\frac{\partial c}{\partial t} = M \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial c} - 2\kappa \frac{\partial^2 c}{\partial x^2} \right) \right]
$$

$$
= M \frac{\partial}{\partial x} \left[\frac{\partial^2 f}{\partial c^2} \frac{\partial c}{\partial x} - 2\kappa \frac{\partial^3 c}{\partial x^3} \right]
$$

$$
= M \left[\frac{\partial}{\partial x} \left(\frac{\partial^2 f}{\partial c^2} \frac{\partial c}{\partial x} \right) - 2\kappa \frac{\partial^4 c}{\partial x^4} \right]
$$

Unfortunately, closed form of the solution does not exist generally.

 Ω